Nobel Prize!

Physics for climate and other complex phenomena

Three Laureates share this year’s Nobel Prize in Physics for their studies of chaotic and apparently random phenomena. Syukuro Manabe and Klaus Hasselmann laid the foundation of our knowledge of the Earth’s climate and how humanity influences it. Giorgio Parisi is rewarded for his revolutionary contributions to the theory of disordered materials and random processes.

Complex systems are characterised by randomness and disorder and are difficult to understand. This year’s Prize recognises new methods for describing them and predicting their long-term behaviour.

One complex system of vital importance to humankind is Earth’s climate. Syukuro Manabe demonstrated how increased levels of carbon dioxide in the atmosphere lead to increased temperatures at the surface of the Earth. In the 1960s, he led the development of physical models of the Earth’s climate and was the first person to explore the interaction between radiation balance and the vertical transport of air masses. His work laid the foundation for the development of current climate models.

About ten years later, Klaus Hasselmann created a model that links together weather and climate, thus answering the question of why climate models can be reliable despite weather being changeable and chaotic. He also developed methods for identifying specific signals, fingerprints, that both natural phenomena and human activities imprint in the climate. His methods have been used to prove that the increased temperature in the atmosphere is due to human emissions of carbon dioxide.

Around 1980, Giorgio Parisi discovered hidden patterns in disordered complex materials. His discoveries are among the most important contributions to the theory of complex systems. They make it possible to understand and describe many different and apparently entirely random materials and phenomena, not only in physics but also in other, very different areas, such as mathematics, biology, neuroscience and machine learning.

“The discoveries being recognised this year demonstrate that our knowledge about the climate rests on a solid scientific foundation, based on a rigorous analysis of observations. This year’s Laureates have all contributed to us gaining deeper insight into the properties and evolution of complex physical systems,” says Thors Hans Hansson, chair of the Nobel Committee for Physics.

The View From Above

GOES-R Weather Satellite

On Nov. 19, 2016, an Atlas V rocket launched the first next-generation Geostationary Operational Environmental Satellite-R Series (GOES-R) satellite.

GOES-16 Close View of March 7 Storm

NOAA

This close-up view from a full Earth image by GOES-16 weather satellite shows the powerful nor’easter bringing snow to the northeastern U.S. on March 7, 2018 at 10:26 a.m. EST (1526 GMT).

GOES-16 Nor’easter March 7, 2018

NOAA

A full-disk view of the Earth on March 7, 2018 as seen by the GOES-16 weather satellite at 10:26 a.m. EST (1526 GMT).

Bomb Cyclone GOES-East Full Earth View

NOAA

This full-disk view of Earth from the GOES-East satellite shows a storm swirling over a darkened United States Jan. 4, 2018 at 8:30 a.m. EST (1330 GMT).

The Sun by GOES-16

The GOES-16 satellite’s Solar Ultraviolet Imager took images of the sun using six wavelengths of light, spotting a large coronal hole in the sun’s southern hemisphere on Jan. 29, 2017.

GOES-16 Earth & Moon

NOAA’s GOES-16 satellite took this photo of Earth at 1:07 p.m. EDT (1807 GMT) on Jan. 15. It was created using several of the 16 spectral channels available on the GOES-16 ABI instrument.

GOES-16 Caribbean

The Caribbean islands and part of the southeastern United States are visible in this photo taken by NOAA’s GOES-16 weather satellite.

Hurricane Irma GOES East Sept. 9

The National Oceanic and Atmospheric Administration’s GOES East satellite captured this visible image of Category 4 Hurricane Irma on Saturday (Sept. 9) at 10:37 a.m. EDT (1437 GMT).

GOES East View of Hurricane Harvey

This visible-light image of Hurricane Harvey taken from NOAA’s GOES East satellite on Aug. 25 at 10:07 a.m. EDT (1407 GMT) clearly shows the storm’s eye as the storm nears landfall on Texas’ southeast coast.

GOES East View of Hurricane Maria, Sept. 19, 2017

This image of Category 5 Hurricane Maria moving through the eastern Caribbean was taken at 11 a.m. EDT (1500 GMT) on Sept. 19, 2017, by NOAA’s GOES East satellite.

CSU Spots “Milky Seas”

A comparison of photos taken by older satellite instruments (left) with imagery from the new Day-Night Band (DNB) instrument (right).
Credit CSU/CIRA and NOAA/NESDIS

Using nearly a decade of satellite data, researchers at Colorado State University have uncovered “milky seas” in a way they’ve never been seen before – a rare and fascinating oceanic bioluminescent phenomenon detected by a highly sensitive spaceborne low-light sensor.

The watershed study appears in the world’s largest scientific journal, Scientific Reports, published by Nature Research.

Milky seas are an elusive and rare display of bioluminescence in the Earth’s ocean, and the largest known form on our planet. Distinct from turbulent froth created by wakes of ships, milky seas achieve a long-lived, widespread, and uniform glow in the ocean’s surface that can persist for several nights, and span more than 100,000 square kilometers (almost 39,000 square miles) – about the size of the state of Kentucky.

Mariners experience these extraordinary conditions only in certain remote areas of the world—mainly in the northwest Indian Ocean offshore of the Horn of Africa, and in the waters surrounding Indonesia. Predicting when, where, and why milky seas form remains a modern-day scientific mystery.

The mysterious glow

Surreal descriptions of the fabled “milky sea,” which eyewitnesses say glows as bright as a snow field or a bed of clouds, has been shared among mariners throughout history, said Steve Miller, CIRA’s incoming director and lead author on the Scientific Reports paper. These stories found their way into seafaring adventure novels like Moby-Dick  and Twenty Thousand Leagues Under the Sea, taking their place in folklore, but not so much in scientific observation.

In more than 200 recorded sightings dating back to the 19th century, only once, in 1985, did a research vessel sail through a milky sea. The water sample collected at the time suggested a strain of luminous bacteria, colonizing a bloom of algae at the water’s surface, created the glow. Some of the features of milky seas, however, are not adequately explained by this hypothesis – especially in the face of eyewitness accounts.

Bolstered by new observations from space, researchers are now positioned to understand much more about the circumstances of this fascinating phenomenon. From far above the world’s oceans, the Suomi NPP and NOAA-20 satellites collect imagery using a sophisticated suite of sensors, including the “Day/Night Band” instrument. The Day/Night Band detects very faint amounts of visible light at night, and peers through the darkness to reveal the glow of city lights, the flames of forest fires, and much more – including, now, the ability to see milky seas.

At CSU’s Cooperative Institute for Research in the Atmosphere (CIRA), researchers are constantly analyzing satellite data, including observations from the Day/Night Band. CIRA research using this instrument targeted changing city lights to demonstrate how the COVID-19 pandemic impacted human activity. Researchers have also used it to discover a new phenomenon of nighttime glowing in the Earth’s atmosphere.

“The Day/Night Band continues to amaze me with its ability to reveal light features of the night. Like Captain Ahab of Moby-Dick, the pursuit of these bioluminescent milky seas has been my personal ‘white whale’ of sorts for many years,” Miller said.

Catching the light

By carefully analyzing Day/Night Band observations from three locations where milky seas are often reported, Miller and his team located 12 occurrences of this elusive phenomenon between 2012 and 2021.

Catching the light created by milky seas requires patience – and the right conditions. Even faint moonlight reflecting off the ocean’s surface can mask the signal. Light emitted by the glowing upper atmosphere, both directly upward and as reflected by the clouds, can likewise contaminate observations. Researchers carefully analyzed signals in the satellite data to rule out other sources of light emission, and used sophisticated techniques to find the persistent bioluminescent structures emitting light beyond the background noise.

Appearing as a persistent glowing patch on the ocean at night, these glowing bodies of water move with ocean currents. Disappearing from view during the day – due to the overwhelming amount of light from the Sun compared to the faint glow from the ocean – these patches become visible again to the satellite.

Coupling the satellite observations with measures of sea surface temperature, marine biomass, and the analyzed sea surface currents have led the authors to pose new hypotheses for the unique conditions surrounding milky sea formation.

“Milky seas are simply marvelous expressions of our biosphere whose significance in nature we have not yet fathomed,” Miller said. “Their very being spins an unlikely and compelling tale that ties the surface to the skies, the microscopic to the global scales, and the human experience and technology across the ages; from merchant ships of the 18th century to spaceships of the modern day. The Day/Night Band has lit yet another pathway to scientific discovery.”

###

Imagery and data from this research, including a supplemental collection of colorful eyewitness accounts from mariner encounters with milky seas over the years, are all available online.

This article was orginially published by the American Association for the Advancement of Science.

To Infinity and Beyond

Weather forecasting stays down here in the troposphere where we all live. Space forecasting goes way beyond that.

NOAA’s National Weather Service (NWS) has transitioned a new computer model into operations to increase its understanding of space weather events and improve space weather forecasting capabilities. These advances will help forecasters provide better information to us about potential impacts from a solar storm will help us better prepare and adapt to the disruption storms cause across so many parts of our lives; including communications, satellite and airline operations, human space flight, and navigation and surveying.

WAM-IPE Model

If you want your mobile phone and GPS to work right, we need to know what’s going on with solar storms so this first of its kind coupled Whole Atmosphere Model and Ionosphere Plasmasphere Electrodynamics Model (WAM-IPE Model) is now part of the Space Weather Prediction Center’s (SWPC) suite of forecast tools.

This is a major breakthrough because it’s the first time a forecast model will predict how Earth’s upper atmosphere will respond to solar and geomagnetic conditions as well as the disturbances from the lower atmosphere.

A new neutral-density product that could be used by satellite operators and ground-tracking systems for space traffic management. We’ve all heard how much equipment we have in orbit these days and this information will give operators the ability to predict the orbits of all the tech flying around.

The model will augment the existing WSA-ENLIL solar wind propagation model and the Geospace Model in SWPC operations, adding an important link in the “Sun-to-Earth” space weather modeling process. Space weather is caused by a series of interconnected events, beginning at the Sun and ending in the near-Earth space environment. Our ability to predict conditions and events in space depends on our understanding of these connections, and more importantly, our ability to predict the details.

WSA-Enlil Model Output. Courtesy: NOAA

Sailing for Science

In a study recently published in Geophysical Research Letters, scientists from the University of Washington and NOAA’s Pacific Marine Environmental Laboratory use remotely-piloted sailboats to gather data on cold air pools, or pockets of cooler air that form below tropical storm clouds.

“Atmospheric cold pools are cold air masses that flow outward beneath intense thunderstorms and alter the surrounding environment,” said lead author Samantha Wills, a postdoctoral researcher at the Cooperative Institute for Climate, Ocean and Ecosystem Studies. “They are a key source of variability in surface temperature, wind and moisture over the ocean.”

High Seas Research

The paper is one of the first tropical Pacific studies to rely on data from Saildrones, wind-propelled sailing drones with a tall, hard wing and solar-powered scientific instruments. Co-authors on the NOAA-funded study are Dongxiao Zhang at CICOES and Meghan Cronin at NOAA.

Atmospheric cold pools produce dramatic changes in air temperature and wind speed near the surface of the tropical ocean. The pockets of cooler air form when rain evaporates below thunderstorm clouds. These relatively dense air masses, ranging between 6 to 125 miles (10 to 200 kilometers) across, lead to downdrafts that, upon hitting the ocean surface, produce temperature fronts and strong winds that affect their surroundings. How this affects the larger atmospheric circulation is unclear.

“Results from previous studies suggest that cold pools are important for triggering and organizing storm activity over tropical ocean regions,” Wills said.

To understand the possible role of cold pools in larger tropical climate cycles, scientists need detailed measurements of these events, but it is hard to witness an event as it happens. The new study used uncrewed surface vehicles, or USVs, to observe the phenomena.

Over three multi-month missions between 2017 and 2019, 10 USVs covered over 85,000 miles (137,000 kilometers) and made measurements of more than 300 cold pool events, defined as temperature drops of at least 1.5 degrees Celsius in 10 minutes. In one case, a fleet of four vehicles separated by several miles captured the minute-by-minute evolution of an event and revealed how the cold pool propagated across the region.

“This technology is exciting as it allows us to collect observations over hard-to-reach, under-sampled ocean regions for extended periods of time,” Wills said.

The paper includes observations of air temperature, wind speed, humidity, air pressure, sea surface temperature and ocean salinity during cold pool events. The authors use the data to better describe these phenomena, including how much and how quickly air temperatures drops, how long it takes the wind to reach peak speeds, and how sea surface temperature changes nearby. Results can be used to evaluate mathematical models of tropical convection and explore more questions, like how the gusts created by the temperature difference affect the transfer of heat between the air and ocean.

Humans Have Always Dealt With Climate Change

Photo Credit: Meteoblue.com

In a paper published in Proceedings of the National Academy of Sciences (PNAS) this week Dr. Kaboth-Bahr and an international group of multidisciplinary collaborators identified ancient El Niño-like weather patterns as the drivers of major climate changes in Africa. This allowed the group to re-evaluate the existing thought regarding climate impacts on human evolution.

Dr. Kaboth-Bahr and her colleagues integrated 11 climate archives from all across Africa covering the past 620 thousand years to generate a comprehensive picture of when and where wet or dry conditions prevailed over the continent. “We were surprised to find a distinct climatic east-west ‘seesaw’ a lot like the pattern produced by the weather phenomena of El Niño, that today profoundly influences precipitation distribution in Africa,” explains Dr. Kaboth-Bahr, who led the study.

Wet and dry regions shifted between the east and west of the African continent on timescales of approximately 100,000 years, with each of the climatic shifts being accompanied by major turnovers in flora (plant-life) and mammal fauna (animal-life).

Photo Credit: Fine Art America

“This alternation between dry and wet periods appeared to have governed the dispersion and evolution of vegetation as well as mammals in eastern and western Africa,” explains Dr. Kaboth-Bahr. “The resultant environmental patchwork was likely to have been a critical component of human evolution and early demography as well.”

The scientists’ work suggests that a seesaw-like pattern of rainfall alternating between eastern and western Africa probably had the effect of creating critically important ecotonal regions — the buffer zones between different ecological zones, such grassland and forest.

Ecotonesprovided diverse, resource-rich and stable environmental settings thought to have been important to early modern humans,” adds Dr. Kaboth-Bahr. “They certainly seem to have been important to other faunal communities.”

Image Credit: ZMEScience

“Re-evaluating these patterns of stasis, change and extinction through a new climatic framework will yield new insights into the deep human past,” says Dr. Kaboth Bahr. “This does not mean that people were helpless in the face of climatic changes, but shifting habitat availability would certainly have impacted patterns of demography, and ultimately the genetic exchanges that underpin human evolution.”

Or as I like to say…”Weather is everything”.

That’s Not Rain, It’s

“Brood X” cicadas hatching in such massive numbers the swarms are being picked up by weather RADAR.

Photo Credit: bluestonetree.com

Just this past weekend the National Weather Service Baltimore-Washington Office paid special attention to huge areas of “Biological” returns showing on the Sterling, VA RADAR.

Credit: National Weather Service Baltimore-Washington

2020, We Remember You Well

Having the quality and quantity of weather data now at our disposal is awesome for forecasting. Sometimes though, it’s just plain cool.

The European Organisation for the Exploitation of Meteorological Satellites, aka Eumetsat, combined its own satellite images with contributions from the China Meteorological Administration, the Japan Meteorological Agency and the National Oceanic and Atmospheric Administration to create phenomenal video.

Video Production Credit: Eumetsat

The Hottest Place on Earth

two green cactus plants at daytime
Photo by Yigithan Bal on Pexels.com

Air temperature is measured about 6 feet above the ground in a ventilated shelter that is painted white. This method allows the temperature “in the shade” of air passing through the shelter.

Using this process Death Valley, CA is known as the hottest place on Earth due to the Furnace Creek, CA temperature of 134.1°F (56.7°C) recorded on July 10, 1913.

That’s air temperature, ground surface temperatures are a different beast.

Over the past 20 years NASA has been using satellites equipped with a Moderate Resolution Imaging Spectroradiometer (MODIS) to measure the infrared heat emitted by surfaces like dirt, rocks, etc. to see how hot they get. You’ve certainly experienced touching really hot surfaces during a sunny day (think metal car door). Radiation from the sun mercilessly heats these objects on sunny days.

Using the MODIS data there are two places that have leaped to the top of the surface heat heap; the Lut Desert in Iran, and the Sonoran Desert along the U.S.-Mexico border where temperatures have reached 177.4°F (80.8°C).

The Lut Desert has a larger area with these scorching surface temperatures and is now considered to be the “Hottest Place on Earth”.

Lut Desert, Iran

Lut Desert, Iran

In this Month’s Bulletin of the American Meteorological Society researcher Yunxia Zhao of the University of California, Irvine reveals other mind-bending facts about temperatures here on planet Earth:

The biggest temperature swing in a single day : 147.3°F (81.8°C), from –10.7°F (–23.7°C) to 136.6°F (58.1°C) on July 20, 2006 in China’s Qaidam Basin, a crescent-shaped depression hemmed in by mountains on the Tibetan Plateau.

Qaidam Basin, China

And the coldest place? No shocker here; with a satellite reading of -167.6°F (-110.9°) recorded in 2016 Antarctica reigns supreme.